Better By Design

Energy Efficiency in Needham's Public Construction Projects

Green Needham

Monday, November 26th, 2012 7:00PM – Needham Public Library

Energy Efficiency in Town Projects Presenters tonight Include:

Overview

• **Hank Haff**, Project Manager – PFD - Construction

High Rock School

 Rick Rice, Project Architect, with the DiNisco Design Partnership

Public Services Administration Building (PSAB)

• **Mike Fields,** Project Architect, with Winter Street Architects, Inc.

Discussion Topics tonight

- Who Participants in decision making process
- How Design & Construction process
- What Examples in recent New Buildings
 - High Rock School
 - Public Services Administration Building (PPBC)
- When New buildings and repair, renovations and upgrades to existing buildings and other town infrastructure
 - 2011 Energy Audit and response
 - Investments in Energy Savings

Acronyms - Definitions

CHPS – Collaborative for High Performance Schools http://www.chps.net

ECM – Energy Conservation Measures

EMCS - Energy Management & Control System

LEED – Leadership in Energy and Environmental Design https://new.usgbc.org/leed

MSBA – Massachusetts School Building Authority http://www.massschoolbuildings.org/programs/green_schools

PPBC – Permanent Public Building Committee

PV - Solar Photo Voltaic

RTS – Recycle Transfer Station

Needham's Public Building Design Process (Who)

- <u>Permanent Public Building Committee</u> (PPBC) responsible for oversight on all public building projects in Needham over \$500,000
- <u>PPBC</u> is a volunteer Town Committee with Engineers, Architects, Lawyers, Accountants, and Contractors
- George Kent, P.E., Chairman
- 2 <u>User Group Members</u> for each project
- Public Facilities Department
 - Steve Popper, P.E., Director Design & Construction
 - Chip Laffey, Director of Operations Division
- PPBC members here tonight please raise your hand

Green Design is integral to the PPBC Design Process (How)

- Starts with <u>Architect Selection</u> Qualifications Based selection process (per M.G.L.ch7 section38A1/2-0)
- <u>State Energy Code</u> Now 8th Edition is based on International Building Code (IBC-2009)
- School projects with MSBA funding minimum standards that exceed State Building code in Indoor Air Quality and Natural Daylight
- PPBC process requires:
 - Lifecycle Cost analysis for Building & Systems
 - Cost Benefit analysis on "Green" enhancements

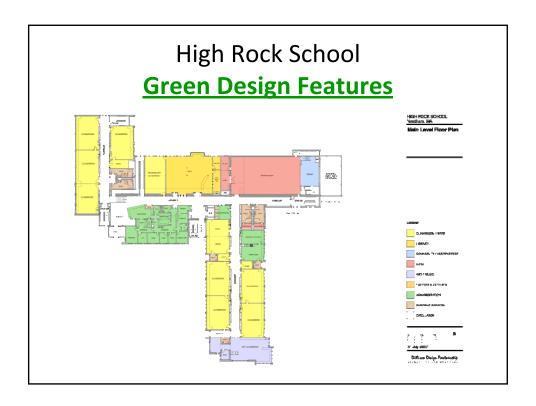
Energy Efficiency – Building Design Considerations (What)

- Energy Efficiency Design Criteria
 - Building Site orientation, natural light & shade,
 - Envelope Design Roof, Walls, windows, foundation
 - Heating System & Cooling Systems type, efficiency, controls and operation
 - <u>Lighting</u> fixture efficiency and controls
 - Alternative Energy Systems
 - Commissioning Operations and Maintenance
- Other Environmental Issues

(Indoor Environmental Quality, Water, Materials & Waste Mgmt)

MSBA Sustainable Building Design Guidelines and Policies

- The minimum standards constantly being revised & upgraded by the MSBA
- MSBA funds commissioning of school buildings
- 2% additional reimbursement of eligible costs if:
 - "Leader" rating using MA-CHPS (2009 edition) or,
 - "Silver" using LEED-S (Schools 2009 edition)

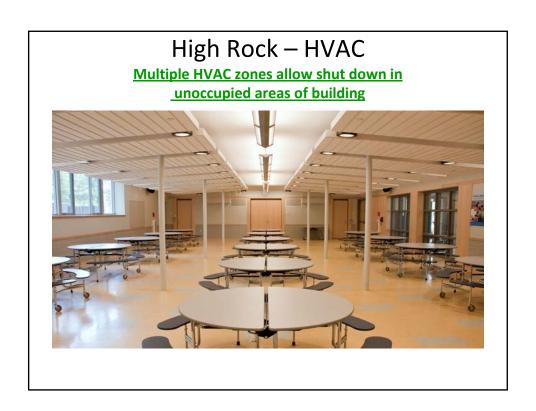

High Rock School

Rick Rice - DiNisco Design Partnership

High Rock School **Green Design Features**

- 25% more energy efficient than "code"
- Reuse, renovation & addition no demolition
- Improved envelope design walls, roof & windows
- Daylight design Natural lighting
- Hi efficient lighting
- HVAC Systems Hi efficiency and enhanced controls

High Rock School **Energy Efficient Envelope**


- Roof System R-25 minimum rigid insulation
- Windows Double pane, low-E, with thermally broken aluminum frames
- Walls Existing exterior walls insulated
- Doors Vestibules at main entrances
 - glass doors similar to windows
 - Insulated Solid Doors

High Rock School **Energy Efficient Envelope**

High Rock – HVAC **Heating Ventilation & Air Conditioning**

- High efficiency condensing boilers (90%+)
- Occupancy sensors in room control heating and provide "on-demand ventilation"
- Multiple HVAC zones allow shut down in unoccupied areas of building
- Hi performance windows low-E glass & exterior sunscreens reduce heat gain in summer
- Operable windows
- Commissioning of systems and equipment

High Rock School **Efficient Lighting Design**

- Maximize use of Natural Light
 - Sunscreens on south facing windows reduce glare
 - Skylights on upper floor
- High efficiency lighting (T5 lamps)
 - Daylight controls turn off lights if daylight sufficient
 - Occupancy sensors turn off lights in unoccupied space
- Result: reduction of lighting loads to .94 watts/SF vs. 1.5 watts/SF required by code (over 35%)

High Rock School

Reduction of lighting loads to .94 watts/SF vs. 1.5 watts/SF

High Rock School

Daylight controls turn off lights if daylight sufficient

High Rock School
Borrowed light

High Rock School

Maximize use of natural light

High Rock School Energy Conservation Measures (ECM)- Analysis

Potential Energy Upgrades Needham High Rock 13 May 2008

DiNisco Design Partnership architects and planners 87 Summer Steet Boston, MA 02110

Item	Benefits	Estimated Construction Cost	Estimated Design Fee	Comments
Glazing Upgrade #1 Upgrade glazing to 1 1/2" "double" Heat Mirror (U=0.16) (Quad Glazing)	Reduced Energy Costs Increased comfort	\$215,000	TBD	• Save \$1,418 / Year • 152 Year Payback
Glazing Upgrade #2 Upgrade glazing to 1 1/2" Heat Mirror (U=0.21) (Triple Glazing)	Reduced Energy Costs Increased comfort	\$125,000	TBD	Save \$466 / Year 268 Year Payback
Increase Roof Insulation Add additional 1.5" of insulation	Reduced Energy Costs	\$75,000 - \$125,000	TBD	Save 383 / Year 196 Year Payback
Increase Wall Insulation Add 2" spray-in insulation in metal stud backup wall at new construction	Reduced Energy Costs	\$35,000	TBD	• Save \$193 / Year • 181 Year Payback

 $06494.0. {\tt CorConsEnrgyModel/!!FinalReport/06494.0.PotentialEnergyUpgrades.xls}$

Computer energy modeling of ECM alternatives with Cost Benefit analysis by Andelman and Lelek Engineering showed that certain ECM enhancements were not recommended due to long payback period

High Rock School **ECM Enhancement Analysis**

High Rock School - Summary

- Project maximizes existing resources of the High Rock School to aid in energy efficiency.
- Energy efficient flexible occupancy: school day/vacation/off hours.
- Energy conservation is part of a comprehensive green design approach: site, maintenance, indoor air quality, energy, construction practices.

Public Services Administration Building (PSAB)

Site Design

- Building footprint informed by wetland setbacks
- Stormwater reclaimed on site in underground cisterns
- · Water-efficient native plantings; food bearing for wildlife
- Built tightly to existing grove to reduce # of trees removed

Public Services Administration Building (PSAB)

Envelope Enhancements

Roof

- Colors uses lightly-colored aggregate to reduce heat load in summer.
- Solar Ready Sloped on south side and structure increased to allow future panels.

Walls

 Insulation – Continuous to four (4) feet below grade

Windows

- Shading- overhangs and "box-outs"
- Efficient Thermally broken window frames & Low-E glass

Winter Street Architects @

Public Services Administration Building (PSAB)

Building Materials

Recycled -

 Aluminum siding and steel structure are both highly recycled and highly recyclable

Low VOCs -

 Interior materials and furnishings chosen to prevent "sick building syndrome".

'Green' Certified -

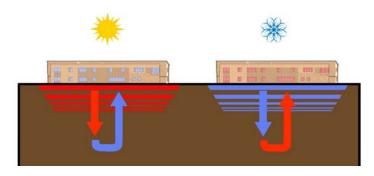
 Furniture selection favored LEED certified or other sustainably certified products.

Winter Street Architects ©

Public Services Administration Building (PSAB)

Lighting and Power

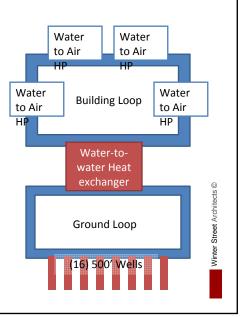
- All office spaces receive natural daylight and views
- Pine Grove filters south light
- Energy Efficient lighting controlled by motion sensors
- Building Automation System (BAS) monitors building energy and provides active control of systems.



Winter Street Architects ©

Public Services Administration Building (PSAB)

Ground Source Heating and Cooling


- "Geothermal" (Ground Source Heating and Cooling) has no direct fossil fuel consumption and is carbon neutral apart from electrical load.
- Improvements to grid contribute to sustainability of the system.
- Onsite generation would be carbon free.

Public Services Administration Building (PSAB)

How the system Works

- · Heat sink installed under parking lot
- Heat is transferred to or from the building loop
- Water to air heat pumps use refrigerant cycle to add or reject the room heat
- (Resistance heat backup was added in heat pumps, but not needed)
- · No cooling tower needed
- · No space needed for boiler
- All of the heat gained and lost is free, the only energy required is the transfer
- Also, an Enthalpy Recovery Unit tempers incoming makeup air by exchanging energy with exhaust air

Public Services Administration Building (PSAB) **Summary**

- Building came in under budget
- TCO evaluation triggered Ground Source system
- System has been functioning without backup
- More info at:

http://winterstreetarchitects.wordpress.com/2010/04/02/digging-geothermal/

Winte

2011 Needham Energy Audit

- Included Ten (10) Public Buildings
- Performed by EMG
- Identified energy and cost savings opportunities
- Helps prioritize energy saving investments

2011 Energy Audit of 10 Town Buildings Summary of Results

Total Baseline Energy Consumption (10 buildings audited)	63,394	MMBtu
Total Baseline Energy Consumption for remaining town buildings	21,927	MMBtu
Total baseline non-building Energy Consumption (street lights, traffic lights, etc)	9,648	MMBtu
Total Baseline Energy Consumption	94,969	MMBtu
for all town buildings		
Total Estimated Annual Energy Savings:	12,199	MMBtu
Estimated Total Percentage Energy Savings	12.85%	

Energy Audit - Implementation

- No/Low Cost measures: (under \$1,000)
 - maintenance related items and relative low investment
 - E. G. standalone HAVC controls, temperature set-backs and lighting controls special areas.
- Capital Cost measures: (over \$1,000)
 - building wide lighting retrofit,
 - lighting controls for entire building or zones
 - exterior lighting,
 - upgrade/replacement of old HVAC system,
 - installation of VFD,
 - building retro-commissioning,
 - envelope upgrade and insulation including new thermal windows and,
 - appliance replacement.

Energy Audit- Actions

- The town has already implemented some energy conservation measures during summer of 2011 that included:
 - Installing new heating plant at Fire Station #2
 - Installing new Chiller at Public Safety building
 - Installing new water heater at Hillside Elementary School
 - Installing lighting occupancy sensors at Mitchell & Hillside Elementary Schools
 - Installing new energy star roof for Pollard Middle School
- All the above measures collectively have an estimated annual savings potential of 1,696 MMBtu.

Other Energy & Cost Savings Opportunities

- Pollard School
 - √ Green Roof Project 2011 (complete)
 - Boiler Replacement 2013
- √ Newman School (2011-12) (Complete)
 - √ New Roof
 - $-\sqrt{\text{Energy Efficient Boilers}}$
 - $-\sqrt{\text{Energy Efficient Domestic Hot Water}}$
 - $-\sqrt{\text{Roof Top units}}$
 - √ Commissioning

Alternative Energy Opportunities

Needham Solar Advisory Committee

- Solar Photo Voltaic (PV)
- RTS @ Central Ave
 - On capped landfill
 - Salt Shed Roof Solar ready
- Other Town locations

Summary

Better By Design

Energy Efficiency in Needham's

Public Construction Projects

»Who

»How

»Where

»When

(Because we think you know Why)

